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Abstract We investigate the usefulness of the wide-angle Fast Fourier Transform-based

beam propagation method (FFT-BPM) to investigate important and quite involved prob-

lems in the propagation of optical beams. The incident transverse electric (TE) and

transverse magnetic (TM) optical beams at the critical angle on a dielectric interface are

investigated. Major numerical difficulties associated with the singularity of the transverse

derivative of the step-like refractive index at the interface plane (for the TM case) are

circumvented via an ‘‘equivalent-index’’ formalism. An arc-tangent function is used to

approximate the abrupt change of the refractive index at the interface, such that the

singular derivative is eliminated, and the TM problem is transformed to an equivalent TE

one with no singular behavior. Further, the propagation of a rectangular incident pulse on

an interface at the critical angle is also studied. In this investigation, the large shift of the

lateral field and the standing wave pattern resulting from the incident and reflected fields

are investigated and justified by simple calculations. A new phenomenon, called ‘‘spatial

transient’’ is discussed, concerning the substantial spatial evolution of the pulse over very

short propagation distance (fraction of the wavelength). Finally, a parametric study of a
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plasmonic-type sensor in the Kretschmann configuration is presented using the proposed

FFT-BPM to ensure its validity in studying such subwavelength-based phenomenon.

Keywords Electromagnetic optics � Goos–Hanchen shift � Optical sensor � Total internal
reflection � Numerical/analytical modeling

1 Introduction

The existence of a lateral shift in total internal reflection is attributed, historically, to

Newton (1952). Newton reported a theoretical basis and experimental evidence for the

penetration of the light into the rarer medium due to the condition of total internal

reflection. However, Newton explained the lateral shift with a mechanical model, whereas

the Goos–Hanchen (GH) effect is intrinsically due to the wave nature of the electromag-

netic radiation field. However, based on the quantum mechanics, the GH effect is attributed

to the wave nature of the matter. It is worth to note that the GH-shift has been studied with

relative accuracies long time ago (Antar and Boerner 1974; Horowitz and Tamir 1969;

McGuirk and Carniglia 1977). The papers of (Lotsch 1970; Puri and Birman 1986) contain

references to a large number of both theoretical and experimental studies of the Goos–

Hänchen effect in acoustics, nonlinear optics, absorbing media, spatially dispersive media,

plasmas, semiconductors, super lattices, etc.

In the recent developments of evanescent-wave sensors (Hoa et al. 2007), near-field

plasmonics (Kawata et al. 2009), probing and spectroscopy (Courjon 2003; and Baida et al.

2000), ultra high-density optical multiplexers and de-multiplexers (Van Uden 2014), the

spatial features of these objects and the propagation distances of the optical beams should

be of the order of the wavelength or much smaller (Fillard 1996). However, most of the

studies were limited to large values of the ratio W/k (C10), where W is half of the total 1/e

width of the beam and k is the wavelength (Antar 1977). Moreover, some methods—

though accurate—were limited to angles of incidence which are not exactly at the critical

one (Brekhovskikh and Godin 2013). On one hand, the stability and complexity of the

numerical implementation of these methods limit their extension to the domain of near-

field structures and subwavelength phenomena (Wang et al. 2016). On the other hand, most

of these methods suffer from the difficulties associated with diffractive fields at the sub-

wavelength scales (Makris and Demetri 2011). Additionally, almost all of these methods

can’t handle inhomogeneous media (Bliokh and Aiello 2013). Accordingly, the invention

of a revolutionary method to circumvent the above mentioned difficulties become an

exigent demand.

The Beam Propagation Method (BPM) meets, so far, the needs of most of the previously

mentioned research areas (Sujecki 2014). The versatility of the BPM ranked it at the top of

the numerical methods which are able to handle a broad class of applications in photonic

integrated devices, nano-optical devices, plasmonics, near-field optical probing and sensors

(Lifante 2015). The accuracy and efficiency of the BPM in a large class of optical phe-

nomenon has been proved, compared to other techniques such as finite difference time

domain (FDTD), Finite Element method (FEM), etc. (Sujecki 2014). The bidirectional

BPM succeeded to take into account the back reflected fields encountered in many devices

especially: laser cavities (Rao et al. 2000), frustrated total internal reflection, and butt-

coupling of light beams to wave-guiding structures (Okamoto 2006).

 51 Page 2 of 17 L. R. Gomaa et al.

123



In this paper, the applicability of the BPM in studying the GH shift of optical beam at

critical incidence on a dielectric interface and the Kretschmann-type plasmonic sensor is

studied and analyzed. Further, the subwavelength rectangular pulse excitation of plasmonic

waveguides is considered for the first time to the best of our knowledge. The extension of

the FFT-BPM is also reported to investigate a severe case of TM field at an abrupt

discontinuity of the refractive index profile. It is shown that by a proper derivation of an

equivalent-index profile, the TM problem can be transformed to an equivalent TE one,

where the usual FFT-BPM could be implemented very easily.

2 Theoretical model and analysis of the interface problem

2.1 TE Gaussian beam

Figure 1 shows an incident Gaussian beam on a plane of dielectric interface between two

medium of refractive indices n1 and n2 where n1[ n2. For the sake of simplicity, a 2D

structure is assumed (i.e. o=oy ¼ 0) as shown in Fig. 1. A Gaussian beam with its electric

field Ey(x,z) parallel to the interface at x = 0 is incident at the critical angle

hc ¼ sin�1 n2=n1ð Þ
� �

. Further, the axis of the incident beam is located at x = xc. The half-

width of the Gaussian beam and the free space wavelength are taken as W and k0,
respectively.

The incident beam can be expressed as a superposition of plane waves with varying

amplitudes. Each component of the plane waves will be reflected from the boundary at

x = 0 with the proper Fresnel reflection coefficient with different amounts of phase shifts.

The reflected beam is formed by incorporating the reflected plane-wave components.

Therefore, a lateral shift occurs in the reflected beam. Lotsch (1968) explained that the

energy redistribution in the reflected beam takes place to produce a shifted beam, In this

regard, he calculated the Poynting vector, which gives the direction of energy flow. It has

been shown that a part of the beam indeed enters the rarer medium and reemerges at

another point to produce the observed shift.

In the coordinate system (xi, zi) the transverse distribution of the Ey component with

unity amplitude is written as:

Xi

2W

X
Xc

n2

Z

n1

Zgo

zi

t

cθ

θ

Fig. 1 Incident Gaussian beam
on a plane dielectric
interface separating two media
with refractive indices n1 and n2
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EyðxiÞ ¼ e�
xi
Wð Þ2 ð1Þ

In the (x, z) coordinate system, with the time dependence exp(jxt), the Gaussian dis-

tribution takes the form (Horowitz and Tamir 1969):

Eyðx; zÞ ¼ e�
x�xc
W cos ht½ �2þjkx sin ht ð2Þ

where ht is the ‘‘tilt’’ angle of the beam’s axis with respect to the z-axis, and k = 2pn0/k0 is
the wavenumber in a reference medium with refractive index n0. In this study, n0 is taken

as the refractive index of the first medium n1. Obviously, the refractive index is invariant

with respect to z and hence the scalar wave equation for the TE case is written as (Okamoto

2006):

r2 + k20n
2ðxÞ

� �
Eyðx; zÞ ¼ 0 ð3Þ

where r2 � o
2

ox2

� �
þ o

2

oz2

� �
. The wide-angle BPM formalism was developed by Feit and

Fleck (1978). A FORTRAN program is implemented for the TE case. The marching

procedure of the field Ey(x, z) from z to z ? Dz is represented as follows:

Eyðx; zþ DzÞ ¼ P:Q:Pf gEyðx; zÞ ð4Þ

where the propagator and phase correction operators are given as (Feit and Fleck 1978):

P ¼ e
�jDz2

r2
?ffiffiffiffiffiffiffiffiffi

r2
?þk2

p
þk ð5aÞ

Q ¼ e �jvDzð Þ ð5bÞ

where r2
? � ð o

2

ox2
Þ, k = k0n0 and v = k0(n(x)-n0) = k0dn(x). The propagation in the uni-

form (reference) medium is performed in the spatial-frequency domain (kx-domain) via

Fast Fourier Transform (FFT). However, the phase correction operator Q is applied in the

space domain.

In the propagation part of the BPM, the field is decomposed into plane wave compo-

nents where each plane wave is multiplied by its corresponding plane wave propagator as

reported by Feit and Fleck (1978). This is followed by a phase correction applied in the

space domain. We consider the value of (W/k) = 10, where k = k0/n1. This case was

previously studied by (Antar 1977). Figure 2 represents the contour plot of the total field

during its propagation when k0 = 1.55 lm, n1 = 1.94, n2 = 1.0, and xc = 5w. It may be

noted from this figure that the peak value of the lateral field along the z-axis in the interface

plane x = 0 is displaced by an amount S from the geometrical-optics point of incidence Zgo
shown in Fig. 1. Around the critical angle of incidence, an approximate analytical

expression for the GH-shift has been derived by Antar (1977) and Horowitz and Tamir

(1969) as:

SHT ¼ AðhÞ
25=4 cos h

Re
W

k

	 
1=2 ejp=4e c2o=4ð ÞD�1=2ðcoÞ
1þ AðhÞ

ffiffiffiffiffiffiffi
�d

p
�

ffiffi
2

p
ejp=4ffiffiffiffiffi
kW

p e c2o=4ð ÞD1=2ðcoÞ
h i

8
<

:

9
=

;
ð6Þ

where D±1/2(co) is the parabolic cylinder function of order (±1/2) and argument co, Re
denotes the real part of the evaluated expression and the other functions are defined as

follows:
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AðhÞ ¼ 4m cos2 hc �
sin h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hðsin hþ sin hc

p
cos2 hþ m2ðsin2 h� sin2 hcÞ
� �

d ¼ sec hðsin h� sin hcÞ

co ¼
jk1Wd
ffiffiffi
2

p

ð7Þ

The constant m depends on the polarization state of the incident beam where m = 1 for

TE polarization and m = (n1/n2)
2 for TM case. The wave number in medium 1 is

k1 = 2pn1/ko, where ko is the free space wavelength. The above expression SHT for the

GH-shift suffers from two main discrepancies. Firstly, as h approaches hc, the parabolic

cylinder functions D±1/2(co) varies essentially with (h-hc)
1/2 with quasi-infinite slope and

a cusp-like structure at the critical angle. Secondly, away from hc, SHT is reduced exactly to
the well-known classical result of Artmann (1948):

SA ¼ 2m cos2 hc �
sin h

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsin2 h� sin2 hcÞ

q
cos2 hþ m2ðsin2 h� sin2 hcÞ
� � ð8Þ

In this study, the lateral shift S is calculated by the FFT-BPM. Figure 3 shows the lateral field

along the interface at x = 0 for TE polarization and compared with that obtained by Antar and

Boerner (1974). Then, the shift between this field and the incident one for a Gaussian TE beam at

the critical incidence is obtained. It is revealed from the figure that a good agreement between the

two curves where S/W is almost 0.1. The shift is normalized to the Gaussian beam half-width

W. For the sake of clarity, we take the point Zgo as the origin of Fig. 3.

2.2 TM Gaussian beam

The difficulties of the BPM with TM field are obvious (Vassallo 1997), especially when the

structure under consideration exhibits an abrupt discontinuity in the refractive index profile

Fig. 2 Total propagated field due to an incident Gaussian beam on a dielectric interface at the critical angle.
I, T and R are the launched Gaussian field, transmitted and reflected fields, respectively. P and S depict the
peak field at the interface plane and the standing wave pattern, respectively in the vicinity of the incidence
zone on the plane x = 0
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in the transverse direction (x-axis). As pointed out by Poladian and Ladouceur (1998), the

scalar wave equation for the magnetic field Hy(x, z) corresponding to the TM case takes the

following form (Poladian and Ladouceur 1998):

r2 Hyðx,z) + k20n
2ðxÞHyðx,z)�

1

n2
on2

ox

oH

ox
¼ 0 ð9Þ

Obviously, the last term, on2

ox

� �
oH
ox

� �
represents a major problem from the numerical

point of view. However, this mixed term, could be avoided by transforming the problem

from the TM to an ‘‘equivalent’’ TE with an ‘‘equivalent’’ index given by (Poladian and

Ladouceur 1998):

n2eqðxÞ ¼ n2ðxÞ � nðxÞ
k0

o2

ox2
1

nðxÞ ð10Þ

Accordingly, the TM problem is reduced to an equivalent TE one, where the scalar

wave equation is converted to:

½r2 + k20n
2
eq�Fðx; zÞ ¼ 0 ð11Þ

Where Fðx; zÞ ¼ Hyðx; zÞ=nðxÞ. However, the transverse second derivative of the 1/n(x) in

Eq. 10 still a major problem (in the equivalent TE-BPM) since the profile n(x) has a step-

like shape at x = 0. Yamauchi et al. (2009) proposed a sigmoide function of the form:

nða; xÞ ¼ n2 þ
dn

1þ e�ða=xÞ ð12Þ

to approximate a step-like interface between two half-spaces n2 and n2 ? dn, where ‘‘a’’ a
parameter that describes the ‘‘steepness’’ of the index change at the interface x = 0. This

function is used to approximate the step-index profile at the interface for the TM case.

However, the parameter ‘‘a’’ should be large (C500) (Yamauchi et al. 2009) in order to

approach as close as possible the actual abrupt index change at x = 0.

Clearly, for an abrupt index change, the second derivative in Eq. 10 o2

ox2
1

nðxÞ

� �
is singular

and must be replaced by o2

ox2
1

nða;xÞ with n (a, x) as given in Eq. 12. Numerically, very large

Fig. 3 The Lateral field along the z-axis at x = 0 for TE polarization case
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and sharp spikes (for a C 500) appear in the equivalent index when n(x) is substituted with

n(a, x) from Eq. 12. Such spikes lead to a numerical diverging behavior, and hence the

equivalent TE-BPM becomes impossible, unless ‘‘a’’ is reduced to much lower values than

104. However, this reduction in a degrades the accuracy of the equivalent TE-BPM. In

evaluation the values of GH shift and the lateral shift of interface field.

In this paper we proposed another function to solve the ambiguities associated with the

sigmoid function. An arc-tangent function was successful in the approximation of the

abrupt change in the refractive index at x = 0. The step-like index profile at x = 0 is,

therefore, approximated by:

narcðxÞ ¼ n2 þ dn 0:5þ tan�1ðx=aÞ
p

� �
 �
ð13Þ

where the parameter ‘‘a’’ could be kept as small as required of order 1 nm or less to

describe the degree of steepness in n(x) from n2 for x\ 0 to n1 = n2 ? dn where x C 0.

As a decrease to zero, the narcðxÞ tends to a perfect step change from n1 for x C 0 to n2 for

x\ 0. Inserting Eq. 13 into Eq. 10, we get the equivalent index profile n2eq as:

n2
eq
ðxÞ ¼ n2arc �

narcðxÞ
k0

2ðdnÞ2

n3
arc
ðxÞ � p2a2 � ð1þ x2

a2
Þ2

þ 2xdn

n2
arc
ðxÞ � pa3 � ð1þ x2

a2
Þ2

" #

ð14Þ

The equivalent neq is then substituted in Eq. 11 and an equivalent TE-BPM is imple-

mented with the same parameters as those considered previously in Fig. 3. The lateral field

is plotted in Fig. 4 at steepness a = 0.05 lm and compared with that one obtained by Antar

and Boerner (1974). It is revealed from this figure that a good agreement between the

results of the two methods is achieved.

2.3 Rectangular spatial pulse

The ability of the BPM to tackle challenging problems is tested by considering a rectan-

gular spatial pulse of width W = 10k = 10 k0/n1 centered at xc = 40 lm from the inter-

face at x = 0. An overall evolution of the total propagated field is shown in Fig. 5a, b. The

Fig. 4 The lateral field along the z-axis for the TM polarization case at a = 0.05 lm
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rectangular pulse P is launched at z = 0 with its axis tilted at an angle ht = 59� with

respect to the z-axis which corresponds to the critical angle of incidence sin�1 1
1:94

� �
¼ 31�

on the interface at x = 0. The geometrical optical point of incidence is taken as Zgo = -

xc/tanht = 24 lm. At the interface, a peak spot ‘‘S’’ occurs similar to the Gaussian beam

case. This peak is shifted from the point Zgo by an amount equals to the shift exhibited by

the lateral field as shown in Fig. 6. The lateral field of the Gaussian beam is also shown in

Fig. 6 for the purpose of comparison.

The lateral shift of the rectangular pulse (z - zgo)/w = 0.64 is six times greater than

that of the Gaussian beam with a shift of 0.1. This is expected since the spectral extent of

Fig. 5 The total propagated field due to a launched rectangular pulse P, while, T and R are the transmitted
and reflected fields. The peak of the lateral field S at the interface plane and SW is the standing wave pattern
in the vicinity of the incidence zone on the plane x = 0, (a) 3D plot and (b) contour plot

Fig. 6 A rectangular pulse launched in the plane z = 0 creates a lateral field FL along the z-axis. The
lateral shift is 6 times greater than the corresponding one for a Gaussian beam
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the rectangular pulse of width W in the spectral kx-space is proportional to

2Wðsin kxWÞ=kxW . However, the spectrum of a Gaussian shape of the same width (W) in

the kx-space is proportional to
ffiffiffi
p

p
We�k2xW

2=4. An elementary justification is obvious if we

note that the (1/e) width of a Gaussian spectrum is kxg ¼ 2=W while that of the sinc-

function (The spectrum of a rectangular pulse) is roughly kxp ¼ p=W (the first null of the

sinc-function). Accordingly, the amount of plane wave spectral components contributing to

the lateral shift of the rectangular pulse is larger than those contributing to the lateral shift

of the Gaussian beam by an amount � kxp=kxg 	 p=2ð Þ (i.e. approximately 160%).

It is well known that the lateral shift of an optical beam is proportional to the divergence

angle (angular spread) Dht of the beam. The divergence angle Dht of the rectangular pulse
could be estimated from the extent of the plane wave spectral components of the spatial

spectrum (i.e. in the kx-space) of the pulse. It is straightforward to evaluate Dht since the

axis of the pulse is tilted with an angle p
2
� hc

� �
= 59� with respect to the z-axis. The

corresponding spectral wavenumber is kx0 ¼ k0n1 sin ht ¼ 6:74 lm �1. Taking into account

the spectral extent of the pulse kxp ¼ ðp=WÞ ¼ 0:785 lm�1, we can see that the pulse’s

spectrum extends in the kx-space by an amount: kx0 
 kxp ¼ k0n1 sin hc 
 p=W ¼
6:74 
 0:785ð Þ lm�1 ¼ 7:525 to 5:955 lm�1. This spectral extent corresponds to an

angular extent from sin�1 5:955=k0n1ð Þ to sin�1 7:525=k0n1ð Þ i.e. from 49.2� to 73.1�. This
amounts to an angular spread Dht = 24� around the direction of the axis of the rectangular

pulse which makes 59� with respect to the z-axis. Such a relatively large angular spread is

responsible for the large lateral shift associated with the lateral interface field as depicted in

Fig. 6.

It should be pointed out that the shape of the launched rectangular pulse evolves

significantly in the vicinity of the launching plane z = 0. Figure 7a, b depict such evo-

lution, where the left side of the pulse facing the interface at x = 0, exhibits ripples; while

the right side is apparently not affected too much.

The spatial period of these ripples is ‘‘not uniform’’ and it varies from 1.45 lm at the

left side of the pulse to almost 0.6 lm near the right side of the pulse. Here, we could

mention that the exact analysis of the evolution of the shape of a spatial-limited light beam

needs a consideration from the interested researchers. We claim that these ripples are a

manifestation of a certain kind of a quite complex diffraction phenomenon associated with

Fig. 7 Evolution of the rectangular pulse shape in the vicinity of the launching plane z = 0, a 3D plot and
b contour plot
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the spatial transient of the pulse edges. This behavior is very similar to the diffraction of a

plane wave by a slit in a conducting plane; as will be explained now.

2.3.1 Spatial transients and the diffraction phenomenon

Let us consider the radiation from a slit width with the same width of the rectangular pulse

used in the BPM calculations (20 k1) as shown in Fig. 8.

In this study, a uniform plane wave with unity-amplitude: e-jkZ is incident from the left

of the slit. The far field is observed at a distance Z from the slit, using the approximate

Fresnel diffraction formula as:

Eðx; zÞ ¼
ffiffiffiffiffiffiffi
jk

2pz

r

e�jkz

Za

�a

ejkðx�x0Þ2=2zdx0 ð15Þ

The integral is evaluated in terms of Fresnel-Integrals as:

Eðx; zÞ ¼
ffiffiffiffi
jk

2

r

e�jkz � F

ffiffiffiffiffi
2

kz

r

ð�xþ aÞ
 !

� F

ffiffiffiffiffi
2

kz

r

ð�x� aÞ
 !" #

ð16Þ

where the Fresnel-integral F is given in terms of the cosine and sine integrals:

Fðu) = Cðu) � jSðu) =
Zu

0

cosðpv
2

2
Þdv�

Zu

0

sinðpv
2

2
Þdv ð17Þ

The Fresnel-integrals are calculated numerically via a FORTRAN program, and the

diffraction pattern is evaluated at Z = 1000 lm. Figure 9 shows the field magnitude

calculated by the Fresnel-integrals and the suggested FFT-BPM. It is revealed from this

figure that an excellent agreement between both results is achieved.

The far-field at a distance Z C (2a)2/(k/2) (the Rayleigh distance) can be regarded as the

diffraction from two knife edges at x = ±a. An elementary result from the antenna theory

shows that the first nulls of the far-field pattern (the Sinc-function) occur at an angle of

ho = sin-1(k/2a). Therefore, the two lines making this angle with the Z-axis give the

directions of the two nulls of the main lobe as shown in Fig. 10. Accordingly, at the end of

the propagation distance Z = 1000 lm, the first nulls occur at X = ± Z tan (sin-1(k/
2a) = ±1000 tan[sin-1 (1/20)] = ±50 lm. This justifies our claim that the pulse propa-

gation is due to the diffraction of a plane wave by a slit. In the near-zone, the ripples occur

at the beginning of the propagation process. Figure 11 shows the evolution of the rect-

angular pulse shape during the propagation (using the BPM) over a distance of 0.8 lm in

the medium n1 with n1 = 1.94 and the free space wavelength ko = 1.55 lm).

Fig. 8 Slit analogous to the
rectangular pulse
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The analytical results based on Huygens’ principle leading to Fresnel-integral are not

accurate close to the aperture (Goodman 2005), this is due to the assumption based on the

physical-optics at which the aperture field is the same as the incident field. Further, the

vanishing fields over the conducting screen do not satisfy the boundary conditions.

However, Sommerfeld solution of the plane wave diffraction by a perfectly conducting

half-plane has been used extensively to synthesize the diffraction of an incident plane wave

on a slit due to the diffraction of two interacting half-planes. The diffraction ripples in the

near field (Fresnel-region) can thus be viewed due to a complicated interference between

the simple geometric-optical field transmitted through the aperture, and the cylindrical

edge waves scattered from the two edges of the slit. Accordingly, we can calculate the

near-field diffraction pattern in the Fresnel-zone (which extends till Z B (2a)2/3k, i.e.
B16 lm) by the diffraction integral:

Eðx; zÞ ¼
ffiffiffiffi
jk

2

r

e�jkz � F

ffiffiffiffiffi
2

kz

r

ð�xþ aÞ
 !

� F

ffiffiffiffiffi
2

kz

r

ð�x� aÞ
 !" #

ð18Þ

Figure 12 depicts the results obtained from the BPM and Fresnel-integral when

Z = 16 lm. It may be noted from Fig. 12 that the ripples occur in both cases. Therefore, it

can be concluded that such ripples exist due to diffraction effects.

Fig. 9 Far field of a plane wave diffracted by a slit, and rectangular pulse propagated a distance
Z = 1000 lm in a uniform homogeneous medium

Fig. 10 The two lines giving the
directions of the two nulls of the
main lobe along Z direction
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2.3.2 Standing wave effects

The interference between the incident pulse and the reflected field results in a standing

wave (SW) field near the peak of the lateral field S as shown in Fig. 5. Such a standing

wave field is depicted in the closer shot of Fig. 13a, b.

The standing wave field variation from the peak spot S with the distance in the positive

x distance for a distance of 5 lm is shown in Fig. 14, it may be seen from this figure that

the periodicity of that pattern is about 0.478 lm. It is worth noting that the rectangular

pulse has a spectral extent in the kx-space from 5.955 to 7.525 lm-1. This corresponds to

an x-wavelength ‘‘kx’’ ranging from (2p/7.525) = 0.835 lm to (2p/5.955) = 1.055 lm.

Therefore, the average x-wavelength is kxav = 0.5(0.835 ? 1.055) = 0.945 lm. Further,

Fig. 12 Ripples formation along the width of the propagated rectangular pulse and the diffraction pattern of
the radiation from the slit as calculated by Fresnel integral in the near-zone at a distance 16 lm from the slit

Fig. 11 Ripples formation over the width of the rectangular pulse from the beginning of the propagation
process a 3D plot and b contour plot
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the standing wave pattern shown in Fig. 14 has a period of 0.5 kx = 0.478 lm, where,

kx & 0.956 lm. This value agrees perfectly (to within 1%) with the above mentioned

value kxav = 0.945 lm.

2.3.3 Parametric study of Kretschmann-type plasmonic sensor

In order to ensure the usefulness of the proposed FFT-BPM, a parametric study of plas-

monic sensor based on Kretschmann configuration is investigated as shown in Fig. 15. In

this study a prism of refractive index n1 = 1.5 is placed over a silver film of thickness

d = 60 nm and refractive index n2 = 0.06-j4. Further, the incident light has a wavelength

of 0.633 lm and the propagation length is taken as 0.6 lm. The metallic film allows the

plasmons to travel along the nanoscale metallic guiding film, and hence, direct coupling of

optical signals to nanometer electronic devices can occur (Peale et al. 2016). Figure 16

Fig. 13 a 3D Plot of the standing wave pattern SW in the vicinity of the interface peak spot S and b The
corresponding contour plot

Fig. 14 The field variation from the peak of spot zone S as we move away from the interface for a distance
of 5 lm
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shows the propagation of an incident sub-wavelength pulse of width k/4 through the

studied configuration with analyte refractive index n3 = 1. The parameter ‘‘a’’ is set to 0.1

of the computational step size in the x-direction which amounts to 0.025 nm. The effects of

the analyte refractive index n3 and the light wavelength k on the guided power carried by

the plasmonic field are investigated.

2.3.4 Sensitivity Study

A subwavelength TM rectangular pulse with a width of k/2 where k = 0.63//n1 lm is

incident on the base of the prism at the critical angle sin-1 (n3/n1). The narrow pulse has a

wide plane wave spatial spectrum that can excite the plasmonic waveguide modes which

propagate along the metallic film. The guided power Pg which is proportional to the

integral:
Rd=2

�d=2

Hy xð Þ
�� ��2=n2 xð Þdx is calculated at the end of the propagation distance of 3 lm.

In this study, the analyte refractive index n3 is changed from 1 to 1.5 at different film

thicknesses 20, 40 and 60 nm as shown in Fig. 17. It may be noted from this figure that the

peak of the normalized guided power increase by decreasing the film thickness. Further,

Fig. 15 Kretschmann-type
Surface Plasmon (SP) sensor

Fig. 16 3D and contour plots of an incident quarter-wavelength pulse width on a 60 nm plasmonic guide
via evanescent wave coupling in the Kretschmann configuration with k = 0.63 lm, prism index = 1.5, and
air as an analyte
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the peaks are shifted toward the upper analyte refractive index n3 = 1.5 by decreasing the

film thickness. This could be predicted theoretically, since the plasmons at the sides of the

thinner films (facing the prism and the analyte) interact stronger than the thicker films

(where the plasmons are separated further apart). Therefore, more power could be launched

to thinner films than the thicker ones (Sarid 1981; Berini 2009).

2.3.5 Spectral response

The amount of the guided plasmonic power varies with the wavelength of the incident light

pulse on the base of the prism. Figure 18 depicts such variation in the wavelength range

from 0.4 to 0.7 lm. The prism and analyte refractive indices are kept constants at 1.5 and 1

respectively, while the film thickness changes from 20 to 60 nm as shown in Fig. 18. The

Drude model is used to calculate the relative permittivity of the silver film as follows

(Johnson and Christy 1972):

e2ðxÞ ¼ 1�
x2

p

x2 þ jxc
ð19Þ

where the plasma angular frequency xp = 1.326 9 1016 rad/s, and the phenomenological

electron’s relaxation frequency c = 7.055 9 1015 rad/s. It may be seen from Fig. 18 that

Fig. 17 Sensitivity curves of Kretschmann-type sensor for three different values of the film thickness: 20,
40 and 60 nm

Fig. 18 Spectral response curves of Kretschmann-type sensor at different values of the film thickness d
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the peak response occurs at k = 0.565 lm regardless the value of d (the film thickness).

Also, the amount of the guided power increases by decreasing the film thickness which is

compatible with the results of the sensitivity analysis.

3 Conclusion

In this paper we presented the results of studying some types of optical beams interacting

with a dielectric interface at critical angle of incidence. Our aim is to demonstrate the

competitiveness of the FFT-BPM in the investigation of a relatively wide class of optical

beam propagation and interaction. Firstly, to demonstrate the conformity of the results

obtained by the BPM with other well-known approximate methods (Antar and Boerner

1974; Horowitz and Tamir 1969; McGuirk and Carniglia 1977). We studied the case of a

TE Gaussian beam, and compared the shift of the lateral field with that one obtained by

other sophisticated method (relying on a solution involving parabolic cylinder functions).

Secondly, we adapted the BPM to treat the TM case involving abrupt refractive index

change in a direction transverse to the direction of propagation. The difficulties associated

with that delicate case are circumvented via an equivalent-index formalism (proposed by

Poladian and Ladouceur (1998)), which transformed the TM problem to an equivalent TE

one. The ability of the BPM to tackle propagation problems involving sharp-limited spatial

beams is tested by considering rectangular pulse incident on dielectric and metal interfaces

(plasmonic waveguides in Kretschmann-type sensor). An analytical justification of the

spatial-transient behavior of the propagated pulse is presented. Also, a parametric study

involving sensitivity and spectral assessments of the Kretschmann-type sensor is presented.
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